Astronomy and Astrophysics – Astronomy
Scientific paper
Sep 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007apj...667..476h&link_type=abstract
The Astrophysical Journal, Volume 667, Issue 1, pp. 476-488.
Astronomy and Astrophysics
Astronomy
3
Methods: Numerical, Nuclear Reactions, Nucleosynthesis, Abundances, Stars: Evolution, Stars: Supernovae: General
Scientific paper
Iron and neighboring nuclei are formed in massive stars shortly before core collapse and during their supernova outbursts, as well as during thermonuclear supernovae. Complete and incomplete silicon burning are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present a new hybrid equilibrium-network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. This allows accurate prediction of the nuclear abundance evolution, deleptonization, and energy generation at a greatly reduced computational cost when compared to a conventional nuclear reaction network. During silicon burning, the resultant QSE-reduced network is approximately an order of magnitude faster than the full network it replaces and requires the tracking of less than a third as many abundance variables, without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multidimensional applications.
Freiburghaus Christian
Hix William Raphael
Parete-Koon Suzanne T.
Thielemann Friedrich-Karl
No associations
LandOfFree
The QSE-Reduced Nuclear Reaction Network for Silicon Burning does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The QSE-Reduced Nuclear Reaction Network for Silicon Burning, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The QSE-Reduced Nuclear Reaction Network for Silicon Burning will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1011597