Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2011-11-23
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
Accepted as an ApJ Letter, 4 figures
Scientific paper
We use images of high spatial and temporal resolution, obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope, to reveal how the generation of transverse waves in Type I spicules is a direct result of longitudinal oscillations occurring in the photosphere. Here we show how pressure oscillations, with periodicities in the range 130 - 440 s, manifest in small-scale photospheric magnetic bright points, and generate kink waves in the Sun's outer atmosphere with transverse velocities approaching the local sound speed. Through comparison of our observations with advanced two-dimensional magneto-hydrodynamic simulations, we provide evidence for how magnetoacoustic oscillations, generated at the solar surface, funnel upwards along Type I spicule structures, before undergoing longitudinal-to-transverse mode conversion into waves at twice the initial driving frequency. The resulting kink modes are visible in chromospheric plasma, with periodicities of 65 -220 s, and amplitudes often exceeding 400 km. A sausage mode oscillation also arises as a consequence of the photospheric driver, which is visible in both simulated and observational time series. We conclude that the mode conversion and period modification is a direct consequence of the 90 degree phase shift encompassing opposite sides of the photospheric driver. The chromospheric energy flux of these waves are estimated to be approximately 300,000 W/m^2, which indicates that they are sufficiently energetic to accelerate the solar wind and heat the localized corona to its multi-million degree temperatures.
Christian Damian Joseph
Jess David B.
Keenan Francis P.
Keys Peter H.
Mathioudakis Michail
No associations
LandOfFree
The Origin of Type I Spicule Oscillations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Origin of Type I Spicule Oscillations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Origin of Type I Spicule Oscillations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-377083