Astronomy and Astrophysics – Astrophysics
Scientific paper
2008-05-05
Astronomy and Astrophysics
Astrophysics
Scientific paper
Based on early solar system abundances of short-lived radionuclides (SRs), such as $^{26}$Al (T$_{1/2} = 0.74$ Myr) and $^{60}$Fe (T$_{1/2} = 1.5$ Myr), it is often asserted that the Sun was born in a large stellar cluster, where a massive star contaminated the protoplanetary disk with freshly nucleosynthesized isotopes from its supernova (SN) explosion. To account for the inferred initial solar system abundances of short-lived radionuclides, this supernova had to be close ($\sim$ 0.3 pc) to the young ($\leqslant$ 1 Myr) protoplanetary disk. Here we show that massive star evolution timescales are too long, compared to typical timescales of star formation in embedded clusters, for them to explode as supernovae within the lifetimes of nearby disks. This is especially true in an Orion Nebular Cluster (ONC)-type of setting, where the most massive star will explode as a supernova $\sim$ 5 Myr after the onset of star formation, when nearby disks will have already suffered substantial photoevaporation and/or formed large planetesimals. We quantify the probability for {\it any} protoplanetary disk to receive SRs from a nearby supernova at the level observed in the early solar system. Key constraints on our estimate are: (1) SRs have to be injected into a newly formed ($\leqslant$ 1 Myr) disk, (2) the disk has to survive UV photoevaporation, and (3) the protoplanetary disk must be situated in an enrichment zone permitting SR injection at the solar system level without disk disruption. The probability of protoplanetary disk contamination by a supernova ejecta is, in the most favorable case, 3 $\times$ 10$^{-3}$.
No associations
LandOfFree
The origin of short-lived radionuclides and the astrophysical environment of solar system formation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The origin of short-lived radionuclides and the astrophysical environment of solar system formation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The origin of short-lived radionuclides and the astrophysical environment of solar system formation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-209129