Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics
Scientific paper
2011-11-30
Astronomy and Astrophysics
Astrophysics
Cosmology and Extragalactic Astrophysics
12 pages, 7 figures. Submitted to ApJ
Scientific paper
Microlensing has proven an effective probe of the structure of the innermost regions of quasars, and an important test of accretion disk models. We present light curves of the lensed quasar HE 0435-1223 in the R band and in the ultraviolet, and consider them together with X-ray light curves in two energy bands that are presented in a companion paper. Using a Bayesian Monte Carlo method, we constrain the size of the accretion disk in the rest-frame near- and far-UV, and constrain for the first time the size of the X-ray emission regions in two X-ray energy bands. The R-band scale size of the accretion disk is about 10^15.53 cm (~46 r_g), slightly smaller than previous estimates, but larger than is predicted by the standard thin disk model. In the UV, the source size is weakly constrained, with a strong prior dependence. The UV to R-band size ratio is consistent with the thin disk model prediction, with large error bars. In soft and hard X-rays, the source size is smaller than ~10^15 cm (~13 r_g) at 90% confidence. We do not find evidence of structure in the X-ray emission region, as the most likely value for the ratio of the hard X-ray size to the soft X-ray size is unity. The simulations do not support the idea that quasar flux variability is due to coherent changes in accretion disk area. Finally, we find that the most likely value for the mean mass of stars in the lens galaxy is ~0.3 M_sun, consistent with other studies.
Blackburne Jeffrey A.
Chartas George
Chen Bin
Dai Xinyu
Kochanek Christopher S.
No associations
LandOfFree
The Optical, Ultraviolet, and X-ray Structure of the Quasar HE 0435-1223 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Optical, Ultraviolet, and X-ray Structure of the Quasar HE 0435-1223, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Optical, Ultraviolet, and X-ray Structure of the Quasar HE 0435-1223 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-412221