Astronomy and Astrophysics – Astrophysics
Scientific paper
2007-02-12
Astronomy and Astrophysics
Astrophysics
13 pages, 11 figures, accepted for publication in A&A
Scientific paper
10.1051/0004-6361:20066883
Although AGN feedback through ionised winds is of great importance in models of AGN/galaxy coevolution, the mass and energy output via these winds, even in the nearby universe, is poorly understood. The issue is complicated by the wide range of ionisation in the winds, which means that multiwavelength observational campaigns are required to obtain the complete picture. In this paper, we use a ~ 160 ks XMM-Newton RGS spectrum to get the most accurate view yet of the ionised outflow (warm absorber) in NGC 7469 as seen in X-rays, finding that there is a wide range of ionisation, with log xi in the range ~ 0.5-3.5 erg cm s^-1, and two main velocity regimes, at 580-720 and 2300 km s^-1, with the highest velocity gas being the least ionised. The total absorbing column density in the X-rays is of order 3 x 10^21 cm^-2. We find that the lowest ionisation phase of the absorber is probably identical with one of the phases of the UV absorber discovered in previous studies. We show that both X-ray and UV absorbers are consistent with an origin near the base of a torus wind, where matter is being launched and accelerated. Calculating the mass outflow rate and kinetic luminosity of all the absorber phases, we demonstrate that the X-ray absorbing gas carries respectively ~ 90% and 95% of the mass and kinetic energy output of the ionised outflow.
Behar Ehud
Blustin Alexander J.
Branduardi-Raymont Graziella
Holczer Tomer
Kaastra Jelle S.
No associations
LandOfFree
The mass-energy budget of the ionised outflow in NGC 7469 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The mass-energy budget of the ionised outflow in NGC 7469, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The mass-energy budget of the ionised outflow in NGC 7469 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-633125