Computer Science
Scientific paper
Sep 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008icar..197..137g&link_type=abstract
Icarus, Volume 197, Issue 1, p. 137-151.
Computer Science
23
Scientific paper
We model the thermal evolution of a subsurface ocean of aqueous ammonium sulfate inside Titan using a parameterized convection scheme. The cooling and crystallization of such an ocean depends on its heat flux balance, and is governed by the pressure-dependent melting temperatures at the top and bottom of the ocean. Using recent observations and previous experimental data, we present a nominal model which predicts the thickness of the ocean throughout the evolution of Titan; after 4.5 Ga we expect an aqueous ammonium sulfate ocean 56 km thick, overlain by a thick (176 km) heterogeneous crust of methane clathrate, ice I and ammonium sulfate. Underplating of the crust by ice I will give rise to compositional diapirs that are capable of rising through the crust and providing a mechanism for cryovolcanism at the surface. We have conducted a parameter space survey to account for possible variations in the nominal model, and find that for a wide range of plausible conditions, an ocean of aqueous ammonium sulfate can survive to the present day, which is consistent with the recent observations of Titan's spin state from Cassini radar data [Lorenz, R.D., Stiles, B.W., Kirk, R.L., Allison, M.D., del Marmo, P.P., Iess, L., Lunine, J.I., Ostro, S.J., Hensley, S., 2008. Science 319, 1649 1651].
Brodholt John P.
Feltham Daniel L.
Fortes Dominic A.
Grindrod Peter M.
Nimmo Francis
No associations
LandOfFree
The long-term stability of a possible aqueous ammonium sulfate ocean inside Titan does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The long-term stability of a possible aqueous ammonium sulfate ocean inside Titan, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The long-term stability of a possible aqueous ammonium sulfate ocean inside Titan will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1335700