Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology
Scientific paper
2004-01-15
Nucl.Phys.Proc.Suppl. 134 (2004) 171-178
Astronomy and Astrophysics
Astrophysics
General Relativity and Quantum Cosmology
8 pages, 2 figures, invited talk given at the Second International Conference on Particle and Fundamental Physics in Space (Sp
Scientific paper
10.1088/0264-9381/21/12/001
This paper discusses new fundamental physics experiment to test relativistic gravity at the accuracy better than the effects of the 2nd order in the gravitational field strength. The Laser Astrometric Test Of Relativity (LATOR) mission uses laser interferometry between two micro-spacecraft whose lines of sight pass close by the Sun to accurately measure deflection of light in the solar gravity. The key element of the experimental design is a redundant geometry optical truss provided by a long-baseline (100 m) multi-channel stellar optical interferometer placed on the International Space Station. The geometric redundancy enables LATOR to measure the departure from Euclidean geometry caused by the solar gravity field to a very high accuracy. LATOR will not only improve the value of the parameterized post-Newtonian (PPN) parameter gamma to unprecedented levels of accuracy of 1 part in 1e8, it will also reach ability to measure effects of the next post-Newtonian order (1/c^4) of light deflection resulting from gravity's intrinsic non-linearity. The solar quadrupole moment parameter, J2, will be measured with high precision, as well as a variety of other relativistic. LATOR will lead to very robust advances in the tests of fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.
Nordtvedt Kenneth L. Jr.
Shao Michael
Turyshev Slava G.
No associations
LandOfFree
The Laser Astrometric Test of Relativity Mission does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Laser Astrometric Test of Relativity Mission, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Laser Astrometric Test of Relativity Mission will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-299987