The Kadets 1/4 theorem for polynomials

Mathematics – Classical Analysis and ODEs

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7 pages

Scientific paper

We determine the maximal angular perturbation of the (n+1)th roots of unity
permissible in the Marcinkiewicz-Zygmund theorem on L^p means of polynomials of
degree at most n. For p=2, the result is an analogue of the Kadets 1/4 theorem
on perturbation of Riesz bases of holomorphic exponentials.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Kadets 1/4 theorem for polynomials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Kadets 1/4 theorem for polynomials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Kadets 1/4 theorem for polynomials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-3441

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.