The $J$-matrix method

Mathematics – Classical Analysis and ODEs

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

18 pages, title changed, minor changes, to appear in Adv. Appl. Math

Scientific paper

Given an operator L acting on a function space, the J-matrix method consists of finding a sequence y_n of functions such that the operator L acts tridiagonally on y_n with respect to n. Once such a tridiagonalization is obtained, a number of characteristics of such an operator L can be obtained. In particular, information on eigenvalues and eigenfunctions, bound states, spectral decompositions, etc. can be obtained in this way. We review the general set-up, and we discuss two examples in detail; the Schrodinger operator with Morse potential and the Lame equation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The $J$-matrix method does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The $J$-matrix method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The $J$-matrix method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-668874

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.