Mathematics – Statistics Theory
Scientific paper
2006-05-23
IEEE Transactions on Signal Processing, 2009, vol 57, 3426 - 3441
Mathematics
Statistics Theory
49 pages, 14 Postscript figures
Scientific paper
10.1109/TSP.2009.2023397
In this paper novel classes of 2-D vector-valued spatial domain wavelets are defined, and their properties given. The wavelets are 2-D generalizations of 1-D analytic wavelets, developed from the Generalized Cauchy-Riemann equations and represented as quaternionic functions. Higher dimensionality complicates the issue of analyticity, more than one `analytic' extension of a real function is possible, and an `analytic' analysis wavelet will not necessarily construct `analytic' decomposition coefficients. The decomposition of locally unidirectional and/or separable variation is investigated in detail, and two distinct families of hyperanalytic wavelet coefficients are introduced, the monogenic and the hypercomplex wavelet coefficients. The recasting of the analysis in a different frame of reference and its effect on the constructed coefficients is investigated, important issues for sampled transform coefficients. The magnitudes of the coefficients are shown to exhibit stability with respect to shifts in phase. Hyperanalytic 2-D wavelet coefficients enable the retrieval of a phase-and-magnitude description of an image in phase space, similarly to the description of a 1-D signal with the use of 1-D analytic wavelets, especially appropriate for oscillatory signals. Existing 2-D directional wavelet decompositions are related to the newly developed framework, and new classes of mother wavelets are introduced.
Metikas Georgios
Olhede Sofia C.
No associations
LandOfFree
The Hyperanalytic Wavelet Transform does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Hyperanalytic Wavelet Transform, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Hyperanalytic Wavelet Transform will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-182174