Mathematics – K-Theory and Homology
Scientific paper
2010-11-23
Mathematics
K-Theory and Homology
16 pages
Scientific paper
Let X be a noetherian scheme of finite Krull dimension, having 2 invertible in its ring of regular functions, an ample family of line bundles, and a global bound on the virtual mod-2 cohomological dimensions of its residue fields. We prove that the comparison map from the hermitian K-theory of X to the homotopy fixed points of K-theory under the natural Z/2-action is a 2-adic equivalence in general, and an integral equivalence when X has no formally real residue field. We also show that the comparison map between the higher Grothendieck-Witt (hermitian K-) theory of X and its \'etale version is an isomorphism on homotopy groups in the same range as for the Quillen-Lichtenbaum conjecture in K-theory. Applications compute higher Grothendieck-Witt groups of complex algebraic varieties and rings of 2-integers in number fields, and hence values of Dedekind zeta-functions.
Berrick Jon A.
Karoubi Max
Schlichting Marco
Østvær Paul Arne
No associations
LandOfFree
The homotopy fixed point theorem and the Quillen-Lichtenbaum conjecture in hermitian K-theory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The homotopy fixed point theorem and the Quillen-Lichtenbaum conjecture in hermitian K-theory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The homotopy fixed point theorem and the Quillen-Lichtenbaum conjecture in hermitian K-theory will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-586632