Mathematics – General Topology
Scientific paper
2011-02-21
Mathematics
General Topology
5 pages
Scientific paper
A family $\mathcal N$ of closed subsets of a topological space $X$ is called a {\em closed $k$-network} if for each open set $U\subset X$ and a compact subset $K\subset U$ there is a finite subfamily $\mathcal F\subset\mathcal N$ with $K\subset\bigcup\F\subset \mathcal N$. A compact space $X$ is called {\em supercompact} if it admits a closed $k$-network $\mathcal N$ which is {\em binary} in the sense that each linked subfamily $\mathcal L\subset\mathcal N$ is centered. A closed $k$-network $\mathcal N$ in a topological group $G$ is {\em invariant} if $xAy\in\mathcal N$ for each $A\in\mathcal N$ and $x,y\in G$. According to a result of Kubi\'s and Turek, each compact (abelian) topological group admits an (invariant) binary closed $k$-network. In this paper we prove that the compact topological groups $S^3$ and $\SO(3)$ admit no invariant binary closed $k$-network.
Banakh Taras
Turek Slawomir
No associations
LandOfFree
The groups $S^3$ and $\SO(3)$ have no invariant binary $k$-network does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The groups $S^3$ and $\SO(3)$ have no invariant binary $k$-network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The groups $S^3$ and $\SO(3)$ have no invariant binary $k$-network will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-557480