Mathematics – Metric Geometry
Scientific paper
2009-03-02
Geom. Topol. 10 (2006) 2385-2429
Mathematics
Metric Geometry
This is the version published by Geometry & Topology on 15 December 2006 (V3: typesetting corrections)
Scientific paper
10.2140/gt.2006.10.2385
For compact regions Omega in R^3 with generic smooth boundary B, we consider geometric properties of Omega which lie midway between their topology and geometry and can be summarized by the term "geometric complexity". The "geometric complexity" of Omega is captured by its Blum medial axis M, which is a Whitney stratified set whose local structure at each point is given by specific standard local types. We classify the geometric complexity by giving a structure theorem for the Blum medial axis M. We do so by first giving an algorithm for decomposing M using the local types into "irreducible components" and then representing each medial component as obtained by attaching surfaces with boundaries to 4--valent graphs. The two stages are described by a two level extended graph structure. The top level describes a simplified form of the attaching of the irreducible medial components to each other, and the second level extended graph structure for each irreducible component specifies how to construct the component. We further use the data associated to the extended graph structures to compute topological invariants of Omega such as the homology and fundamental group in terms of the singular invariants of M defined using the local standard types and the extended graph structures. Using the classification, we characterize contractible regions in terms of the extended graph structures and the associated data.
No associations
LandOfFree
The global medial structure of regions in R^3 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The global medial structure of regions in R^3, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The global medial structure of regions in R^3 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-652196