The global McKay-Ruan correspondence via motivic integration

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7 pages. To appear in the Bulletin of the London Mathematical Society

Scientific paper

The purpose of this paper is to show how the motivic integration methods of
Kontsevich, Denef-Loeser and Looijenga can be adapted to prove the McKay-Ruan
correspondence, a generalization of the McKay-Reid correspondence to orbifolds
that are not necessarily global quotients.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The global McKay-Ruan correspondence via motivic integration does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The global McKay-Ruan correspondence via motivic integration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The global McKay-Ruan correspondence via motivic integration will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-541922

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.