The Gauss-Manin connection on the Hodge structures

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1016/S0764-4442(01)02064-X

Pour tout sch\'ema simplicial complexe $X_{\bullet}$ il existe une application canonique $\nabla:H^{\ast}(X_{\bullet})\longrightarrow \Omega^1_{{\mathbb C}/{\mathbb Q}}\otimes H^{\ast}(X_{\bullet})$, appel\'ee la connexion de Gau\ss-Manin. Nous montrons qu'il existe une unique connexion fonctorielle sur toute structure de Hodge-Tate mixte ayant certaines propri\'et\'es de la connexion de Gau\ss-Manin. Cette connexion n'est pas int\'egrable en g\'en\'eral, et alors son int\'egrabilit\'e est une condition non triviale pour qu'une structure de Hodge soit g\'eom\'etrique. Dans des cas particuliers, je donne des formules explicites pour la connexion de Gau\ss-Manin sur la cohomologie singuli\`ere des vari\'et\'es alg\'ebriques sur ${\mathbb C}$ dans les termes de la structure de Hodge.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Gauss-Manin connection on the Hodge structures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Gauss-Manin connection on the Hodge structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Gauss-Manin connection on the Hodge structures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-107187

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.