Mathematics – Operator Algebras
Scientific paper
2009-01-13
Mathematics
Operator Algebras
14 pages, accepted
Scientific paper
We study and compare the gap and the Riesz topologies of the space of all unbounded regular operators on Hilbert C*-modules. We show that the space of all bounded adjointable operators on Hilbert C*-modules is an open dense subset of the space of all unbounded regular operators with respect to the gap topology. The restriction of the gap topology on the space of all bounded adjointable operators is equivalent with the topology which is generated by the usual operator norm. The space of regular selfadjoint Fredholm operators on Hilbert C*-modules over the C*-algebra of compact operators is path-connected with respect to the gap topology, however, the result may not be true for some Hilbert C*-modules.
No associations
LandOfFree
The gap between unbounded regular operators does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The gap between unbounded regular operators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The gap between unbounded regular operators will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-374562