Astronomy and Astrophysics – Astronomy
Scientific paper
Mar 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009exa....23..379k&link_type=abstract
Experimental Astronomy, Volume 23, Issue 1, pp.379-402
Astronomy and Astrophysics
Astronomy
11
Diffractive Focussing, Formation-Flying, Exoplanet Detection
Scientific paper
The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 ×3.6 m square opaque foil punched with 105 to 106 void “subapertures”. Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < λ < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 - 6. We have also validated numerical simulation algorithms for larger Fresnel interferometric arrays. These simulations yield a dynamic range (rejection factor) close to 10 - 8 for arrays such as the 3.6 m one we propose. A dynamic range of 10 - 8 allows detection of objects at contrasts as high as than 10 - 9 in most of the field. The astrophysical applications cover many objects in the IR, visible an UV domains. Examples are presented, taking advantage of the high angular resolution and dynamic range capabilities of this concept.
Deba Paul
Desert Jean-Michel
Duchon Paul
Ehrenreich David
Ferlet Roger
No associations
LandOfFree
The fresnel interferometric imager does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The fresnel interferometric imager, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The fresnel interferometric imager will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-974410