Mathematics – Number Theory
Scientific paper
2008-11-20
Mathematics
Number Theory
20 pages, 6 figures, submitted for publication
Scientific paper
Prime numbers seem to distribute among the natural numbers with no other law than that of chance, however its global distribution presents a quite remarkable smoothness. Such interplay between randomness and regularity has motivated sci- entists of all ages to search for local and global patterns in this distribution that eventually could shed light into the ultimate nature of primes. In this work we show that a generalization of the well known first-digit Benford's law, which addresses the rate of appearance of a given leading digit d in data sets, describes with astonishing precision the statistical distribution of leading digits in the prime numbers sequence. Moreover, a reciprocal version of this pattern also takes place in the sequence of the nontrivial Riemann zeta zeros. We prove that the prime number theorem is, in the last analysis, the responsible of these patterns. Some new relations concerning the prime numbers distribution are also deduced, including a new approximation to the counting function pi(n). Furthermore, some relations concerning the statistical conformance to this generalized Benford's law are derived. Some applications are finally discussed.
Lacasa Lucas
Luque Bartolo
No associations
LandOfFree
The first digit frequencies of primes and Riemann zeta zeros tend to uniformity following a size-dependent generalized Benford's law does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The first digit frequencies of primes and Riemann zeta zeros tend to uniformity following a size-dependent generalized Benford's law, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The first digit frequencies of primes and Riemann zeta zeros tend to uniformity following a size-dependent generalized Benford's law will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-668550