The evolution of binary populations in cool, clumpy star clusters

Astronomy and Astrophysics – Astrophysics – Galaxy Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

12 pages, 7 figures; accepted for publication in MNRAS

Scientific paper

Observations and theory suggest that star clusters can form in a subvirial (cool) state and are highly substructured. Such initial conditions have been proposed to explain the level of mass segregation in clusters through dynamics, and have also been successful in explaining the origin of trapezium-like systems. In this paper we investigate, using N-body simulations, whether such a dynamical scenario is consistent with the observed binary properties in the Orion Nebula Cluster (ONC). We find that several different primordial binary populations are consistent with the overall fraction and separation distribution of visual binaries in the ONC (in the range 67 - 670 au), and that these binary systems are heavily processed. The substructured, cool-collapse scenario requires a primordial binary fraction approaching 100 per cent. We find that the most important factor in processing the primordial binaries is the initial level of substructure; a highly substructured cluster processes up to 20 per cent more systems than a less substructured cluster because of localised pockets of high stellar density in the substructure. Binaries are processed in the substructure before the cluster reaches its densest phase, suggesting that even clusters remaining in virial equilibrium or undergoing supervirial expansion would dynamically alter their primordial binary population. Therefore even some expanding associations may not preserve their primordial binary population.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The evolution of binary populations in cool, clumpy star clusters does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The evolution of binary populations in cool, clumpy star clusters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The evolution of binary populations in cool, clumpy star clusters will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-180324

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.