The effect of the regular solution model in the condensation of protoplanetary dust

Astronomy and Astrophysics – Astrophysics – Earth and Planetary Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

MNRAS: Accepted 2011 February 16. Received 2011 February 14; in original form 2010 July 22

Scientific paper

We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high temperature region (T > 1400 K) Ca-Al compounds dominate and the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3 . The chemistry of forsterite and enstatite are strictly related, and our simulations show a sequence of forsterite-enstatite-forsterite with decreasing temperature. In the low temperature regions (T < 600 K) a range of iron compounds and sulfides form. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model In particular, we find that the turning point in which forsterite replaces enstatite in the low temperature region is sensitive to the solution model. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model, and suggest that this model should provide a more realistic condensation sequence.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The effect of the regular solution model in the condensation of protoplanetary dust does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The effect of the regular solution model in the condensation of protoplanetary dust, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The effect of the regular solution model in the condensation of protoplanetary dust will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-424789

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.