Computer Science
Scientific paper
Jan 1996
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1996gecoa..60..213l&link_type=abstract
Geochimica et Cosmochimica Acta, Volume 60, Issue 2, p. 213-224.
Computer Science
4
Scientific paper
Sets of homologous ligands were used to probe the dissolution of oxide minerals through experiments on bunsenite (NiO). The ligand sets have primary amine, hydroxyl, and carboxyl functional groups and form five-membered, bidentate, ring complexes at the mineral surface. A set of ligands that has only two metal-coordinating functional groups (ox, en, gly) was compared with a set of larger, but similar, ligands (nta, tren) that link three sets of functional groups with a tertiary amine. Experiments were also conducted with hydroxyl ligands (tea), ammonia (NH3), and ligands containing ring nitrogen (pic). The dissolution rates of NiO(s) in the presence of these ligands established close consistency between metal detachment from a dissolving surface and the mechanisms of ligand exchange around dissolved Ni(II)-ligand complexes. The solution pH, however, is an important complicating factor. Metals compete with protons for ligand sites and this protonation changes the ligand structure and reactivity. Several types of protonation lead to different species at the mineral surface and this greatly complicates the rate laws for dissolution. The speciation will be particularly complicated for large-molecular-weight ligands with functional groups that protonate over a wide pH range. In terms of a rate law, protonation of ligand functional groups at the surface is distinct from protonation of structural oxygens at the mineral surface. These are different surface complexes (species) for the purpose of the rate law.
Casey William H.
Devidal Jean-Luc
Ludwig Christian
No associations
LandOfFree
The effect of different functional groups on the ligand-promoted dissolution of NiO and other oxide minerals does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The effect of different functional groups on the ligand-promoted dissolution of NiO and other oxide minerals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The effect of different functional groups on the ligand-promoted dissolution of NiO and other oxide minerals will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-970648