Astronomy and Astrophysics – Astrophysics
Scientific paper
2007-05-02
Astrophys.J.665:457-465,2007
Astronomy and Astrophysics
Astrophysics
to appear in ApJ vol 665 20 August 2007;
Scientific paper
10.1086/519272
High resolution molecular line observations of CS, HCO+, C18O and N2H+ were obtained toward the starless globule FeSt 1-457 in order to investigate its kinematics and chemistry. The HCO+ and CS spectra show clear self-reversed and asymmetric profiles across the face of the globule. The sense of the observed asymmetry is indicative of the global presence of expansion motions in the outer layers of the globule. These motions appear to be subsonic and significantly below the escape velocity of the globule. Comparison of our observations with near-infrared extinction data indicate that the globule is gravitationally bound. Taken together these considerations lead us to suggest that the observed expansion has its origin in an oscillatory motion of the outer layers of the globule which itself is likely in a quasi-stable state near hydrostatic equilibrium. Analysis of the observed linewidths of CO and N2H+ confirm that thermal pressure is the dominant component of the cloud's internal support. A simple calculation suggests that the dominant mode of pulsation would be an l = 2 mode with a period of 0.3 Myr. Deformation of the globule due to the large amplitude l = 2 oscillation may be responsible for the double-peaked structure of the core detected in high resolution extinction maps. Detailed comparison of the molecular-line observations and extinction data provides evidence for significant depletion of C18O and perhaps HCO+ while N2H+ may be undepleted to a cloud depth of about 40 magnitudes of visual extinction.
Aguti E. D.
Alves Jose F.
Bergin Edwin A.
Birkinshaw Mark
Lada Charles J.
No associations
LandOfFree
The Dynamical State fo the Starless Dense Core FeSt 1-457: A Pulsating Globule? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Dynamical State fo the Starless Dense Core FeSt 1-457: A Pulsating Globule?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Dynamical State fo the Starless Dense Core FeSt 1-457: A Pulsating Globule? will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-675128