The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields

Mathematics – Dynamical Systems

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

This is a revised verion containing 36 pages and 8 figures

Scientific paper

We study the displacement map associated to small one-parameter polynomial unfoldings of polynomial Hamiltonian vector fields on the plane. Its leading term, the generating function $M(t)$, has an analytic continuation in the complex plane and the real zeroes of $M(t)$ correspond to the limit cycles bifurcating from the periodic orbits of the Hamiltonian flow. We give a geometric description of the monodromy group of $M(t)$ and use it to formulate sufficient conditions for $M(t)$ to satisfy a differential equation of Fuchs or Picard-Fuchs type. As examples, we consider in more detail the Hamiltonian vector fields $\dot{z}=i\bar{z}-i(z+\bar{z})^3$ and $\dot{z}=iz+\bar{z}^2$, possessing a rotational symmetry of order two and three, respectively. In both cases $M(t)$ satisfies a Fuchs-type equation but in the first example $M(t)$ is always an Abelian integral (that is to say, the corresponding equation is of Picard-Fuchs type) while in the second one this is not necessarily true. We derive an explicit formula of $M(t)$ and estimate the number of its real zeroes.}

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-343794

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.