Mathematics – Combinatorics
Scientific paper
2007-11-06
Mathematics
Combinatorics
23 pages, 17 figures
Scientific paper
A few years ago Kramer and Laubenbacher introduced a discrete notion of homotopy for simplicial complexes. In this paper, we compute the discrete fundamental group of the order complex of the Boolean lattice. As it turns out, it is equivalent to computing the discrete homotopy group of the 1-skeleton of the permutahedron. To compute this group we introduce combinatorial techniques that we believe will be helpful in computing discrete fundamental groups of other polytopes. More precisely, we use the language of words, over the alphabet of simple transpositions, to obtain conditions that are necessary and sufficient to characterize the equivalence classes of cycles. The proof requires only simple combinatorial arguments. As a corollary, we also obtain a combinatorial proof of the fact that the first Betti number of the complement of the 3-equal arrangement is equal to $2^{n-3}(n^2-5n+8)-1.$ This formula was originally obtained by Bj\"orner and Welker in 1995.
Barcelo Hélène
Smith Shelly
No associations
LandOfFree
The Discrete Fundamental Group of the Order Complex of $B_n$ does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Discrete Fundamental Group of the Order Complex of $B_n$, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Discrete Fundamental Group of the Order Complex of $B_n$ will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-134771