Astronomy and Astrophysics – Astrophysics – Earth and Planetary Astrophysics
Scientific paper
2010-08-30
Astronomy and Astrophysics
Astrophysics
Earth and Planetary Astrophysics
"Models" section expanded, references added, accepted by ApJ
Scientific paper
There is no universally acknowledged criterion to distinguish brown dwarfs from planets. Numerous studies have used or suggested a definition based on an object's mass, taking the ~13-Jupiter mass (M_J) limit for the ignition of deuterium. Here, we investigate various deuterium-burning masses for a range of models. We find that, while 13 M_J is generally a reasonable rule of thumb, the deuterium fusion mass depends on the helium abundance, the initial deuterium abundance, the metallicity of the model, and on what fraction of an object's initial deuterium abundance must combust in order for the object to qualify as having burned deuterium. Even though, for most proto-brown dwarf conditions, 50% of the initial deuterium will burn if the object's mass is ~(13.0 +/- 0.8)M_J, the full range of possibilities is significantly broader. For models ranging from zero-metallicity to more than three times solar metallicity, the deuterium burning mass ranges from ~11.0 M_J (for 3-times solar metallicity, 10% of initial deuterium burned) to ~16.3 M_J (for zero metallicity, 90% of initial deuterium burned).
Burrows Adam
Milsom John A.
Spiegel David S.
No associations
LandOfFree
The Deuterium-Burning Mass Limit for Brown Dwarfs and Giant Planets does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Deuterium-Burning Mass Limit for Brown Dwarfs and Giant Planets, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Deuterium-Burning Mass Limit for Brown Dwarfs and Giant Planets will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-179145