The Dantzig selector and sparsity oracle inequalities

Mathematics – Statistics Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Published in at http://dx.doi.org/10.3150/09-BEJ187 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statisti

Scientific paper

10.3150/09-BEJ187

Let \[Y_j=f_*(X_j)+\xi_j,\qquad j=1,...,n,\] where $X,X_1,...,X_n$ are i.i.d. random variables in a measurable space $(S,\mathcal{A})$ with distribution $\Pi$ and $\xi,\xi_1,... ,\xi_n$ are i.i.d. random variables with ${\mathbb{E}}\xi=0$ independent of $(X_1,...,X_n).$ Given a dictionary $h_1,...,h_N:S\mapsto{\mathbb{R}},$ let $f_{\lambda}:=\sum_{j=1}^N\lambda_jh_j$, $\lambda=(\lambda_1,...,\lambda_N)\in{\mathbb{R}}^N.$ Given $\varepsilon>0,$ define \[\hat{\Lambda}_{\varepsilon}:=\Biggl\{\lam bda\in{\mathbb{R}}^N:\max_{1\leq k\leq N}\Biggl|n^{-1}\sum_{j=1}^n\big l(f_{\lambda}(X_j)-Y_j\bigr)h_k(X_j)\Biggr|\leq\varepsilon \Biggr\}\] and \[\hat{\lambda}:=\hat{\lambda}^{\varepsilon}\in \operatorname {Arg min}\limits_{\lambda\in\hat{\Lambda}_{\varepsilon}}\|\lambda\|_{\ell_1}.\] In the case where $f_*:=f_{\lambda^*},\lambda^*\in {\mathbb{R}}^N,$ Candes and Tao [Ann. Statist. 35 (2007) 2313--2351] suggested using $\hat{\lambda}$ as an estimator of $\lambda^*.$ They called this estimator ``the Dantzig selector''. We study the properties of $f_{\hat{\lambda}}$ as an estimator of $f_*$ for regression models with random design, extending some of the results of Candes and Tao (and providing alternative proofs of these results).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Dantzig selector and sparsity oracle inequalities does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Dantzig selector and sparsity oracle inequalities, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Dantzig selector and sparsity oracle inequalities will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-35809

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.