Mathematics – Category Theory
Scientific paper
2003-01-20
Mathematics
Category Theory
23 pages
Scientific paper
It is well known since Stasheff's work that 1-fold loop spaces can be described in terms of the existence of higher homotopies for associativity (coherence conditions) or equivalently as algebras of contractible non-symmetric operads. The combinatorics of these higher homotopies is well understood and is extremely useful. For $n \ge 2$ the theory of symmetric operads encapsulated the corresponding higher homotopies, yet hid the combinatorics and it has remain a mystery for almost 40 years. However, the recent developments in many fields ranging from algebraic topology and algebraic geometry to mathematical physics and category theory show that this combinatorics in higher dimensions will be even more important than the one dimensional case. In this paper we are going to show that there exists a conceptual way to make these combinatorics explicit using the so called higher nonsymmetric $n$-operads.
No associations
LandOfFree
The Combinatorics of Iterated Loop Spaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Combinatorics of Iterated Loop Spaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Combinatorics of Iterated Loop Spaces will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-571267