Astronomy and Astrophysics – Astronomy
Scientific paper
Jan 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011aas...21724214h&link_type=abstract
American Astronomical Society, AAS Meeting #217, #242.14; Bulletin of the American Astronomical Society, Vol. 43, 2011
Astronomy and Astrophysics
Astronomy
Scientific paper
The CNO bi-cycle is the primary energy source for main sequence stars more massive than the sun. To test our understanding of stellar evolution models using the CNO bi-cycle, we have undertaken light-element (CNO) abundance analysis of three main sequence dwarf stars and three red giant stars in the open cluster NGC 752 utilizing high resolution (R 50,000) spectroscopy from the Keck Observatory. Preliminary results indicate, as expected, there is a depletion of carbon in the giants relative to the dwarfs. Additional analysis is needed to determine if the amount of depletion is in line with model predictions, as seen in the Hyades open cluster. Oxygen abundances are derived from the high-excitation O I triplet, and there is a 0.19 dex offset in the [O/H] abundances between the giants and dwarfs which may be explained by non-local thermodynamic equilibrium (NLTE), although further analysis is needed to verify this. The standard procedure for spectroscopically determining stellar parameters used here allows for a measurement of the cluster metallicity, [Fe/H] = 0.04 ± 0.02. In addition to the Fe abundances we have determined Na, Mg, and Al abundances to determine the status of other nucleosynthesis processes. The Na, Mg and Al abundances of the giants are enhanced relative to the dwarfs, which is consistent with similar findings in giants of other open clusters.
Support for K. Hawkins was provided by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.
Hawkins Keith
King Ji
Schuler Simon
The L.
No associations
LandOfFree
The CNO Bi-cycle in the Open Cluster NGC 752 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The CNO Bi-cycle in the Open Cluster NGC 752, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The CNO Bi-cycle in the Open Cluster NGC 752 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1398799