Mathematics – Probability
Scientific paper
2007-06-03
Mathematics
Probability
Scientific paper
In this paper, we propose a probabilistic approach to the study of the characteristic polynomial of a random unitary matrix. We recover the Mellin Fourier transform of such a random polynomial, first obtained by Keating and Snaith, using a simple recursion formula, and from there we are able to obtain the joint law of its radial and angular parts in the complex plane. In particular, we show that the real and imaginary parts of the logarithm of the characteristic polynomial of a random unitary matrix can be represented in law as the sum of independent random variables. From such representations, the celebrated limit theorem obtained by Keating and Snaith is now obtained from the classical central limit theorems of Probability Theory, as well as some new estimates for the rate of convergence and law of the iterated logarithm type results.
Bourgade Paul
Hughes Chris
Nikeghbali Ashkan
Yor Marc
No associations
LandOfFree
The characteristic polynomial of a random unitary matrix: a probabilistic approach does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The characteristic polynomial of a random unitary matrix: a probabilistic approach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The characteristic polynomial of a random unitary matrix: a probabilistic approach will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-689225