The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage

Computer Science – Sound

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4

Carancas, Meteoroid(S), Impact Cratering, Impact Modeling

Scientific paper

The recent Carancas meteorite impact event caused a worldwide sensation. An H4-5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye-witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter-sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100-1000 MJ (0.024- 0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12- 14 kms-1) and shallow entry angles (<20°) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40-60°), and an impact velocity of 350-600 ms-1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of infrasound signals.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-835131

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.