Mathematics – Differential Geometry
Scientific paper
2011-09-03
Mathematics
Differential Geometry
9 pages, 1 figure, 1 table, v1 submitted to The American Mathematical Monthly, v2 with revisions to presentation but results u
Scientific paper
It is well known that in 3-d the average projected area of a convex solid is 1/4 the surface area. In this work, we generalize this theorem to higher dimensions by computing the analogous ratio as a function of the dimension. We prove a method for calculating this ratio in higher dimensions. We use this method to obtain both a recursion relation for this ratio from dimension d to d+1 and an explicit formula for it. We discuss the limiting behavior as the dimension becomes infinite and also mention possible application of the theorem as a test of the dimensionality of space.
No associations
LandOfFree
The Average Projected Area Theorem - Generalization to Higher Dimensions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Average Projected Area Theorem - Generalization to Higher Dimensions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Average Projected Area Theorem - Generalization to Higher Dimensions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-147892