The Asymptotics of Ranking Algorithms

Mathematics – Statistics Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

39 pages, 3 figures

Scientific paper

We consider the predictive problem of supervised ranking, where the task is to rank sets of candidate items returned in response to queries. Although there exist statistical procedures that come with guarantees of consistency in this setting, these procedures require that individuals provide a complete ranking of all items, which is rarely feasible in practice. Instead, individuals routinely provide partial preference information, such as pairwise comparisons of items, and more practical approaches to ranking have aimed at modeling this partial preference data directly. As we show, however, such an approach has serious theoretical shortcomings. Indeed, we demonstrate that many commonly used surrogate losses for pairwise comparison data do not yield consistency; surprisingly, we show inconsistency even in low-noise settings. With these negative results as motivation, we present a new approach to supervised ranking based on aggregation of partial preferences and develop $U$-statistic-based empirical risk minimization procedures. We present an asymptotic analysis of these new procedures, showing that they yield consistency results that parallel those available for classification. We complement our theoretical results with an experiment studying the new procedures in a large-scale web-ranking task.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Asymptotics of Ranking Algorithms does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Asymptotics of Ranking Algorithms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Asymptotics of Ranking Algorithms will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-509069

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.