Astronomy and Astrophysics – Astronomy
Scientific paper
Sep 1999
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1999dps....31.6502i&link_type=abstract
American Astronomical Society, DPS meeting #31, #65.02
Astronomy and Astrophysics
Astronomy
Scientific paper
Data from the Galileo Near Infrared Mapping Spectrometer (NIMS) have been analysed to determine correlations between the observed 5-mu m brightness and the visible/near infrared albedo. A clear correlation is seen, as is expected, but the shape of the correlation spectra places strong constraints on the pressure level of the varying albedo layer. This pressure level is estimated to be greater than 1 bar and would thus appear to correspond with the cloud found by the Galileo probe Nephelometer at 1.4 bars, presumed to be composed of NH_4SH, rather than the higher ammonia ice cloud at 0.7-0.5 bar. A similar correlation study has been performed with Voyager IRIS data. Here a correlation is seen between the radiance at 5-mu m and longer wavelengths, particularly at 10 mu m and 45 mu m where the weighting functions peak at approximately 1 bar. These correlations suggest that there must be a variable opacity absorbing cloud at a pressure level less than about 0.7 bar, presumably ammonia ice, a result which at first sight is contradictory to the NIMS result. The correlation in the radiances at 5 and 45 mu m in the IRIS data has previously been interpreted as being due entirely to the change in opacity of a cloud of ammonia particles based at 0.7 bar, with a radius 6-10 mu m. This model fits the IRIS data well but appears to be inconsistent with the new NIMS near infrared measurements. However, the IRIS results may also be modelled as being due to a small variation in opacity of larger ammonia particles at a lower pressure of 0.5-0.4 bar correlated with a large variation in opacity of the lower NH_4SH cloud. This model is found to be consistent with both the NIMS reflectivity observations and the IRIS data.
Carlson Richard W.
Franquet S.
Irwin Patrick G. J.
Taylor Fred W.
Weir Andrew L.
No associations
LandOfFree
The 5-mu M absorbing clouds on Jupiter and their correlation with both visible/near-IR albedo, and far-IR radiance variations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The 5-mu M absorbing clouds on Jupiter and their correlation with both visible/near-IR albedo, and far-IR radiance variations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The 5-mu M absorbing clouds on Jupiter and their correlation with both visible/near-IR albedo, and far-IR radiance variations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1557755