The 2-adic Eigencurve is Proper

Mathematics – Number Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

For p=2 and tame level N=1 we prove that the map from the (Coleman-Mazur)
Eigencurve to weight space satisfies the valuative criterion of properness.
More informally, we show that the Eigencurve has no "holes"; given a punctured
disc of finite slope overconvergent eigenforms over weight space, the center
can be "filled in" with a finite slope overconvergent eigenform.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The 2-adic Eigencurve is Proper does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The 2-adic Eigencurve is Proper, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The 2-adic Eigencurve is Proper will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-606240

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.