Astronomy and Astrophysics – Astronomy
Scientific paper
Oct 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007dps....39.4704n&link_type=abstract
American Astronomical Society, DPS meeting #39, #47.04; Bulletin of the American Astronomical Society, Vol. 39, p.505
Astronomy and Astrophysics
Astronomy
Scientific paper
Isotopic ratios in planetary atmospheres are of considerable interest, yielding insights both about currently occurring processes, and also the formation and early evolution of the body. Before Cassini, ground-based measurements of Titan's 12C/13C in HCN showed no firm evidence of deviation from the terrestrial inorganic standard (88.9) - albeit with large error bars of 20% - contrasting the enrichment in nitrogen (15N/14N≈4.5 terrestrial). Since 2004, the Composite Infrared Spectrometer (CIRS) instrument on Cassini has recorded spectra of Titan's stratosphere globally, including the emissions of multiple isotopologues for certain hydrocarbons. We selected spectra for analysis from four flybys (T4, T12, T19, T22), covering five latitudes from 65°S to 71°N. By means of a radiative transfer code and inversion scheme, we have first modeled the ν4 band of 12CH4 at 1304 cm-1 to retrieve stratospheric temperatures, and subsequently the emissions of 13CH4, 12C2H2, 13C12CH2, 12C2H6 and 13C12CH6. Our results indicate 12C/13C = 81.2±2.0 for all three species combined over all five latitudes, in excellent agreement with the Huygens GCMS value of 12CH4/13CH4 = 82.3±1.0 (Niemann et al. 2005), some 9% lower than terrestrial inorganic, and lower than in ethane on Saturn (91 (-13) (+26)) and Jupiter (99 (-23) (+43)) (Sada et al. 1996). No latitude variation was detected, however the 12C/13C in the C2 species (83.9±3.1 in acetylene, 89.9±7.2 in ethane) were consistently higher than in methane (78.0±2.7) after considering random errors. Although it is possible that this is a real chemical or physical (condensation) effect, it is more likely due to systematic errors in our temperature profile, as our spectra do not yield independent temperature information at 10 mbar where the emissions of 13C12CH2 and 13C12CH6 originate, and we default to the Huygens probe temperatures. In future, this problem may be resolved by modeling CIRS limb spectra.
Achterberg Richard K.
Bezard Bruno
Cassini CIRS Team
Coustenis Athena
Irwin Patrick G.
No associations
LandOfFree
The 12C/13C Isotopic Ratio In Titan's Hydrocarbons does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The 12C/13C Isotopic Ratio In Titan's Hydrocarbons, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The 12C/13C Isotopic Ratio In Titan's Hydrocarbons will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1066801