Computer Science – Computer Vision and Pattern Recognition
Scientific paper
2010-12-23
Computer Science
Computer Vision and Pattern Recognition
19 pages, 11 figures, 2 tables
Scientific paper
The advent of large scale multimedia databases has led to great challenges in content-based image retrieval (CBIR). Even though CBIR is considered an emerging field of research, however it constitutes a strong background for new methodologies and systems implementations. Therefore, many research contributions are focusing on techniques enabling higher image retrieval accuracy while preserving low level of computational complexity. Image retrieval based on texture features is receiving special attention because of the omnipresence of this visual feature in most real-world images. This paper highlights the state-of-the-art and current progress relevant to texture-based image retrieval and spatial-frequency image representations. In particular, it gives an overview of statistical methodologies and techniques employed for texture feature extraction using most popular spatial-frequency image transforms, namely discrete wavelets, Gabor wavelets, dual-tree complex wavelet and contourlets. Indications are also given about used similarity measurement functions and most important achieved results.
Abahmane Omar
Baaziz Nadia
Missaoui Rokia
No associations
LandOfFree
Texture feature extraction in the spatial-frequency domain for content-based image retrieval does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Texture feature extraction in the spatial-frequency domain for content-based image retrieval, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Texture feature extraction in the spatial-frequency domain for content-based image retrieval will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-296782