Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2010-06-04
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
Accepted for publication in A&A Letters. 5 pages, 3 figures
Scientific paper
10.1051/0004-6361/201014893
Context. Observations at sub-millimeter and mm wavelengths will in the near future be able to resolve the radial dependence of the mm spectral slope in circumstellar disks with a resolution of around a few AU at the distance of the closest star-forming regions. Aims. We aim to constrain physical models of grain growth and fragmentation by a large sample of (sub-)mm observations of disks around pre-main sequence stars in the Taurus-Auriga and Ophiuchus star-forming regions. Methods. State-of-the-art coagulation/fragmentation and disk-structure codes are coupled to produce steady-state grain size distributions and to predict the spectral slopes at (sub-)mm wavelengths. Results. This work presents the first calculations predicting the mm spectral slope based on a physical model of grain growth. Our models can quite naturally reproduce the observed mm-slopes, but a simultaneous match to the observed range of flux levels can only be reached by a reduction of the dust mass by a factor of a few up to about 30 while keeping the gas mass of the disk the same. This dust reduction can either be due to radial drift at a reduced rate or during an earlier evolutionary time (otherwise the predicted fluxes would become too low) or due to efficient conversion of dust into larger, unseen bodies.
Birnstiel Til
Dominik Carsten
Dullemond Cornelis Petrus
Henning Th
Natta Antonella
No associations
LandOfFree
Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-723098