Mathematics – Logic
Scientific paper
Sep 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008epsc.conf..432h&link_type=abstract
European Planetary Science Congress 2008, Proceedings of the conference held 21-25 September, 2008 in Münster, Germany. Online a
Mathematics
Logic
Scientific paper
Traditional methods of planetary geological mapping have relied on photographic hard copy and light-table tracing and mapping. In the last several decades this has given way to the availability and analysis of multiple digital data sets, and programs and platforms that permit the viewing and manipulation of multiple annotated layers of relevant information. This has revolutionized the ability to incorporate important new data into the planetary mapping process at all scales. Information on these developments and approaches can be obtained at http://astrogeology.usgs. gov/ Technology/. The processes is aided by Geographic Information Systems (GIS) (see http://astrogeology. usgs.gov/Technology/) and excellent analysis packages (such as ArcGIS) that permit co-registration, rapid viewing, and analysis of multiple data sets on desktop displays (see http://astrogeology.usgs.gov/Projects/ webgis/). We are currently investigating new technological developments in computer visualization and analysis in order to assess their importance and utility in planetary geological analysis and mapping. Last year we reported on the range of technologies available and on our application of these to various problems in planetary mapping. In this contribution we focus on the application of these techniques and tools to Venus geological mapping at the 1:5M quadrangle scale. In our current Venus mapping projects we have utilized and tested the various platforms to understand their capabilities and assess their usefulness in defining units, establishing stratigraphic relationships, mapping structures, reaching consensus on interpretations and producing map products. We are specifically assessing how computer visualization display qualities (e.g., level of immersion, stereoscopic vs. monoscopic viewing, field of view, large vs. small display size, etc.) influence performance on scientific analysis and geological mapping. We have been exploring four different environments: 1) conventional desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment", or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks. There is still much to learn and understand, however, about how the varying degrees of immersive displays affect task performance. For example, in using a 1280x1024 desktop monitor to explore an image, the mapper wastes a lot of time in image zooming/panning to balance the analysis-driven need for both detail as well as context. Therefore, we have spent a considerable amount of time exploring higher-resolution media, such as an IBM Bertha display 3840x2400 or a tiled wall with multiple projectors. We have found through over a year of weekly meetings and assessment that they definitely improve the efficiency of analysis and mapping. Here we outline briefly the nature of the major systems and our initial assessment of these in 1:5M Scale NASA-USGS Venus Geological Mapping Program (http://astrogeology.usgs. gov/Projects/PlanetaryMapping/MapStatus/VenusStatus/V enus_Status.html). 1. Immersive Virtual Reality (Cave): ADVISER System Description: Our Cave system is an 8'x8'x8' cube with four projection surfaces (three walls and the floor). Four linux machines (identical in performance to the desktop machine) provide data for the Cave. Users utilize a handheld 3D tracked input device to navigate. Our 3D input device has a joystick and is simple to use. To navigate, the user simply points in the direction he/she wants to fly and pushes the joystick forward or backward to move relative to that direction. The user can push the joystick to the left and right to rotate his/her position in the virtual world. A collision detection algorithm is used to prevent the user from going underneath the surface. We have developed ADVISER (ADvanced VIsualization for Solar system Exploration) [1,2] as a tool for taking planetary geologists virtually "into the field" in the IVR Cave environment in support of several scientific themes and have assessed its application to geological mapping of Venus. ADVISER aims to create a field experience by integrating multiple data sources and presenting them as a unified environment to the scientist. Additionally, we have developed a virtual field kit, tailored to supporting research tasks dictated by scientific and mapping themes. Technically, ADVISER renders high-resolution topographic and image datasets (8192x8192 samples) in stereo at interactive frame-rates (25+ frames-per-second). The system is based on a state-of-the-art terrain rendering system and is highly interactive; for example, vertical exaggeration, lighting geometry, image contrast, and contour lines can be modified by the user in real time. High-resolution image data can be overlaid on the terrain and other data can be rendered in this context. A detailed description and case studies of ADVISER are available.
Basilevsky Alexander T.
Dickson James L.
Forsberg A. S.
Head James W.
Huffman J. N.
No associations
LandOfFree
Testing geoscience data visualization systems for geological mapping and training does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Testing geoscience data visualization systems for geological mapping and training, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Testing geoscience data visualization systems for geological mapping and training will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1793658