Mathematics – Algebraic Geometry
Scientific paper
1997-04-02
Mathematics
Algebraic Geometry
LaTeX 2e
Scientific paper
Let $p:R^n\to R$ be a polynomial map. Consider the complex $S'\Omega^*(\RR^n)$ of tempered currents on $R^n$ with the twisted differential $d_p=d-dp$ where $d$ is the usual exterior differential and $dp$ stands for the exterior multiplication by $dp$. Let $t\in R$ and let $F_t=p^{-1}(t)$. In this paper we prove that the reduced cohomology $\tilda H^k(F_t;C)$ of $F_t$ is isomorphic to $H^{k+1}(S'\Omega^*(\RR^n),d_p)$ in the case when $p$ is homogeneous and $t$ is any positive real number. We conjecture that this isomorphism holds for any polynomial $p$, for $t$ large enough (we call the $F_t$ for $t >> 0$ the remote fiber of $p$) and we prove this conjecture for polynomials that satisfy certain technical condition. The result is analogous to that of A. Dimca and M. Saito, who give a similar (algebraic) way to compute the reduced cohomology of the generic fiber of a complex polynomial.
Braverman Alexander
Braverman Maxim
No associations
LandOfFree
Tempered currents and the cohomology of the remote fiber of a real polynomial map does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Tempered currents and the cohomology of the remote fiber of a real polynomial map, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tempered currents and the cohomology of the remote fiber of a real polynomial map will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-422834