Mathematics – Classical Analysis and ODEs
Scientific paper
2007-09-28
Mathematics
Classical Analysis and ODEs
To appear in Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal
Scientific paper
In this paper we consider three different synchronization problems consisting in designing a nonlinear feedback unidirectional coupling term for two (possibly chaotic) dynamical systems in order to drive the trajectories of one of them, the slave system, to a reference trajectory or to a prescribed neighborhood of the reference trajectory of the second dynamical system: the master system. If the slave system is chaotic then synchronization can be viewed as the control of chaos; namely the coupling term allows to suppress the chaotic motion by driving the chaotic system to a prescribed reference trajectory. Assuming that the entire vector field representing the velocity of the state can be modified, three different methods to define the nonlinear feedback synchronizing controller are proposed: one for each of the treated problems. These methods are based on results from the small parameter perturbation theory of autonomous systems having a limit cycle, from nonsmooth analysis and from the singular perturbation theory respectively. Simulations to illustrate the effectiveness of the obtained results are also presented.
Makarenkov Oleg
Nistri Paolo
Papini D.
No associations
LandOfFree
Synchronization problems for unidirectional feedback coupled nonlinear systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Synchronization problems for unidirectional feedback coupled nonlinear systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Synchronization problems for unidirectional feedback coupled nonlinear systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-461821