Mathematics – Number Theory
Scientific paper
2003-03-13
Mathematics
Number Theory
21 pages, in French; to appear in the Journal de l'Institut Mathematique de Jussieu; second version adds a new section refinin
Scientific paper
For each integer d=2,3,4, there exists a field F with cohomological dimension 1 and a del Pezzo surface of degree d over F having no rational point. Proofs use the theorem of Merkur'ev and Suslin, the Riemann-Roch theorem on a surface and Rost's degree formula. ----- Pour chaque entier d=2,3,4, il existe un corps F de dimension cohomologique 1 et une surface de del Pezzo de degre d sur F sans point rationnel. Les demonstrations utilisent le theoreme de Merkur'ev et Suslin, le theoreme de Riemann-Roch sur une surface et la formule du degre de Rost.
Colliot-Th'el`ene Jean-Louis
Madore David A.
No associations
LandOfFree
Surfaces de del Pezzo sans point rationnel sur un corps de dimension cohomologique un does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Surfaces de del Pezzo sans point rationnel sur un corps de dimension cohomologique un, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surfaces de del Pezzo sans point rationnel sur un corps de dimension cohomologique un will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-562302