Mathematics – Number Theory
Scientific paper
2012-03-08
Mathematics
Number Theory
20 pages
Scientific paper
Dans un r\'ecent article, Lagarias et Soundararajan \'etudient les solutions friables \`a l'\'equation a+b=c. Sous l'hypoth\`ese de Riemann g\'en\'eralis\'ees aux fonctions L de Dirichlet, ils obtiennent une estimation pour le nombre de solutions pond\'er\'ees par un poids lisse et une minoration pour le nombre de solutions non pond\'er\'ees. Le but de cet article est de pr\'esenter des arguments qui permettent d'une part de pr\'eciser les termes d'erreur et d'\'etendre les domaines de validit\'e de ces estimations afin de faire le lien avec un travail de la Bret\`eche et Granville, d'autre part d'obtenir le comportement asymptotique exact du nombre de solutions non pond\'er\'ees. In a recent paper, Lagarias and Soundararajan study the y-smooth solutions to the equation a+b=c. Under the Generalised Riemann Hypothesis, they obtain an estimate for the number of those solutions weighted by a compactly supported smooth function, as well as a lower bound for the number of bounded unweighted solutions. In this paper, we aim to prove a more precise estimate for the number of weighted solutions that is valid when y is relatively large with respect to x, so as to connect our estimate with the one obtained by La Bret\`eche and Granville in a recent work. We also prove the conjectured upper bound for the number of bounded unweighted solutions, thus obtaining its exact asymptotic behaviour.
No associations
LandOfFree
Sur les solutions friables de l'équation a+b=c does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Sur les solutions friables de l'équation a+b=c, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sur les solutions friables de l'équation a+b=c will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-17074