Sur les points fixes et les cycles répulsifs au voisinage d'une singularité essentielle isolée à l'instar de la méthode de Zalcman

Mathematics – Complex Variables

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

V4 - revised version (a few typos corrected); French - accepted for publication in the Acta Mathematica Vietnamica

Scientific paper

Let $g$ be a holomorphic function in the neighbourhoods of an isolated essential singularity $v$: if $g$ omits a complex value there, then $v$ may be approached by a sequence of repelling fixed points for $g$, whose multipliers diverge to $\infty$. This implies that an entire function omitting a value or a non-M\"obius self-map of the punctured plane admit infinite repelling fixed points, whose multipliers diverge to $\infty$. By another point of view, we show that, if $v$ is not Picard-exceptional for $g$, then $v$ can be approached by a sequence of 2-cycles of $g$: these cycles are repelling if $v$ is not a completely branched value.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Sur les points fixes et les cycles répulsifs au voisinage d'une singularité essentielle isolée à l'instar de la méthode de Zalcman does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Sur les points fixes et les cycles répulsifs au voisinage d'une singularité essentielle isolée à l'instar de la méthode de Zalcman, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sur les points fixes et les cycles répulsifs au voisinage d'une singularité essentielle isolée à l'instar de la méthode de Zalcman will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-500915

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.