Computer Science – Computer Vision and Pattern Recognition
Scientific paper
2011-12-13
Computer Science
Computer Vision and Pattern Recognition
2 figures
Scientific paper
Matching animal-like flexibility in recognition and the ability to quickly incorporate new information remains difficult. Limits are yet to be adequately addressed in neural models and recognition algorithms. This work proposes a configuration for recognition that maintains the same function of conventional algorithms but avoids combinatorial problems. Feedforward recognition algorithms such as classical artificial neural networks and machine learning algorithms are known to be subject to catastrophic interference and forgetting. Modifying or learning new information (associations between patterns and labels) causes loss of previously learned information. I demonstrate using mathematical analysis how supervised generative models, with feedforward and feedback connections, can emulate feedforward algorithms yet avoid catastrophic interference and forgetting. Learned information in generative models is stored in a more intuitive form that represents the fixed points or solutions of the network and moreover displays similar difficulties as cognitive phenomena. Brain-like capabilities and limits associated with generative models suggest the brain may perform recognition and store information using a similar approach. Because of the central role of recognition, progress understanding the underlying principles may reveal significant insight on how to better study and integrate with the brain.
No associations
LandOfFree
Supervised Generative Reconstruction: An Efficient Way To Flexibly Store and Recognize Patterns does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Supervised Generative Reconstruction: An Efficient Way To Flexibly Store and Recognize Patterns, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Supervised Generative Reconstruction: An Efficient Way To Flexibly Store and Recognize Patterns will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-490089