Sulfur isotope systematics of basaltic lavas from Indonesia: implications for the sulfur cycle in subduction zones

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

11

Scientific paper

We report sulfur isotope compositions of basaltic and basaltic andesite lavas from selected volcanoes in the Indonesian arc system covering the spectrum from low-K tholeiitic to high-K calc-alkaline compositions. The results of 25 samples from seven volcanoes, which are associated with different subduction regimes, show a range in δ34S values of +2.0-+7.8‰ (VCDT) with an average of +4.7+/-1.4‰ (1σ). Averages and within-suite variations of two larger sets of samples from Batur and Soputan volcanoes (+4.2+/-1.3‰ with n=9 and +5.7+/-1.4‰ with n=7, respectively) are comparable to those of the entire sample set. Sulfur concentrations are low (mostly between 2 and 74 ppm, average=19 ppm) and do not show correlations with sulfur isotope composition and whole-rock chemistry, or systematic changes with time in any of the lava suites. From model calculations we infer that basaltic magmas will undergo sulfur isotope fractionation during degassing, most commonly towards lower δ34S values, but that the extent is limited at P-T conditions and oxidation states of interest. Hence, δ34S signatures of basaltic lavas will generally be within a few permil from primary magmatic values, even in cases of extensive sulfur loss. Consequently, magmas in the Indonesian arc system originate from mantle sources that are enriched in 34S relative to MORB and OIB sources and are likely to have δ34S values of about +5-+7‰. The enrichment in 34S is considered to reflect addition of slab-derived material, presumably from sediments rather than altered oceanic crust, with fluids being the most likely transport medium. Absence of correlation between δ34S values of Indonesian basalts and chemical proxies for source components or processes at the slab-wedge interface suggests that sulfur isotopes are relatively insensitive to variations in subduction setting and dynamics. This is supported by the modest range in δ34S of the Indonesian volcanoes studied despite significant variations in the nature and amount of subducted material, and by the similarity with average 34S enrichments in other oceanic arc systems.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Sulfur isotope systematics of basaltic lavas from Indonesia: implications for the sulfur cycle in subduction zones does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Sulfur isotope systematics of basaltic lavas from Indonesia: implications for the sulfur cycle in subduction zones, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sulfur isotope systematics of basaltic lavas from Indonesia: implications for the sulfur cycle in subduction zones will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1777499

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.