Other
Scientific paper
Dec 1998
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1998gecoa..62.3729x&link_type=abstract
Geochimica et Cosmochimica Acta, vol. 62, Issue 23-24, pp.3729-3743
Other
3
Scientific paper
Thiosulfate (S 2 O 3 2- ), polythionate (S x O 6 2- ), dissolved sulfide (H 2 S), and sulfate (SO 4 2- ) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 mol/L in neutral and alkaline chloride springs with low sulfate concentrations (Cl - /SO 4 2- > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl - /SO 4 2- < 10), thiosulfate concentrations were also typically lower than 2 mol/L. However, in some chloride springs enriched with sulfate (Cl - /SO 4 2- between 10 to 25), thiosulfate was found at concentrations ranging from 9 to 95 mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.
Ball James W.
Cunningham K. M.
Nordstrom Darrell Kirk
Schoonen Martin A. A.
Xu Yadong
No associations
LandOfFree
Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. the origin of thiosulfate in hot spring waters does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. the origin of thiosulfate in hot spring waters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. the origin of thiosulfate in hot spring waters will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1291917