Other
Scientific paper
Sep 1995
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995metic..30q.500c&link_type=abstract
Meteoritics, vol. 30, no. 5, page 500
Other
5
Deuterium, Isotopes, Anomalies, Meteorites, Allende, Murchison, Norton County, Organics, Sulfur
Scientific paper
Carbon, hydrogen and sulfur isotopic measurements have been made on individual members of a recently discovered class of organic sulfur compounds, alkyl sulfonates, in the Murchison meteorite. Cooper and Chang (1) reported the first carbon isotopic measurements of Murchison organic sulfonates, providing insight into potential synthetic mechanisms of these, and possibly other, organic species. Hydrogen isotopic measurements of the sulfonates now reveal deuterium excesses ranging from +660 to +2730 per mil. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low temperature astrophysical environment consistent with that of dense molecular clouds. Measurement of the sulfur isotopes provide further constraints on the origin and mechanism of formation of these organic molecules. Recently, there has been growing documentation of sulfur isotopic anomalies in meteoritic material. Thiemens and Jackson (2) have shown that some bulk ureilites possess excess 33S and Thiemens et al. (3) have reported excess 33S in an oldhamite separate from Norton County. Rees and Thode (4) reported a large 33S excess in an Allende acid residue, however, attempts to verify this measurement have been unsuccessful, possibly due to the heterogeneous nature of the carrier phase. With the recognition that sulfur isotopes may reflect nebular chemistry, identification of potential carriers is of considerable interest. In the present study the three stable isotopes of sulfur were measured in methane sulfonate extracted from the Murchison meteorite. The isotopic composition was found to be delta 33S=2.48, delta 34S=2.49 and delta 36S = 6.76 per mil. Based upon analysis of more than 60 meteoritic, and numerous terrestrial samples, the mass fractionation lines are defined by 33Delta = delta 33S-0.50 delta 34S and 36Delta = delta 36S -1.97 delta 34S. From these relations a 33Delta = 1.24 per mil and 36Delta = 0.89 per mil is observed. These anomalies, particularly the 33Delta, are well outside the range of analytical uncertainty, especially for the 33Delta, and are the largest observed in any meteoritic component. As discussed by Thiemens and Jackson (2), due to its position on the periodic chart, sulfur chemically produces mass independent fractionations, as does oxygen. From experiments by Mauersberger et al. (5) it is observed that in a chemically produced mass independent fractionation process, the magnitude of fractionation for the different isotopically substituted species varies with mass and angular momentum, thus, anomalies are expected for both 33S and 36S, but not necessarily of the same magnitude. Laboratory experiments have also confirmed that chemically produced, mass independent fractionations occur , which are mediated by molecular symmetry factors (6). If the source of the fractionation is chemical, this requires that the sulfur isotopic anomaly was established in the gas phase, possibly from nebular reactions involving symmetric CS2. The discovery of an anomalous sulfur isotopic composition in a specific molecule containing excess deuterium is an important advance in the understanding of the cosmochemistry of sulfur. Further measurements and details of possible synthesis and fractionation mechanisms will be presented. References: [1] Cooper G. W. and S. Chang (1995) LPS XXVI, 281. [2] Thiemens M. H. and Jackson T. (1995) LPS XXVI, 1405. [3] Thiemens et al. (1994) Meteoritics, 29, 540. [4] Rees C. E. and Thode H. G. (1977) GCA, 57, 3171. [5] Mauersberger et al. (1993) GRL, 20, 1031. [6] Bains-Sahota S. K. and Thiemens M. H. (1989) J. Chem. Phys., 90, 6099.
Chang Sandy
Cooper George W.
Jackson Ted
Thiemens Mark H.
No associations
LandOfFree
Sulfur and Hydrogen Isotope Anomalies in Organic Compounds from the Murchison Meteorite does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Sulfur and Hydrogen Isotope Anomalies in Organic Compounds from the Murchison Meteorite, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sulfur and Hydrogen Isotope Anomalies in Organic Compounds from the Murchison Meteorite will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-829944