Statistics – Machine Learning
Scientific paper
2012-03-05
Statistics
Machine Learning
Scientific paper
In several application domains, high-dimensional observations are collected and then analysed in search for naturally occurring data clusters which might provide further insights about the nature of the problem. In this paper we describe a new approach for partitioning such high-dimensional data. Our assumption is that, within each cluster, the data can be approximated well by a linear subspace estimated by means of a principal component analysis (PCA). The proposed algorithm, Predictive Subspace Clustering (PSC) partitions the data into clusters while simultaneously estimating cluster-wise PCA parameters. The algorithm minimises an objective function that depends upon a new measure of influence for PCA models. A penalised version of the algorithm is also described for carrying our simultaneous subspace clustering and variable selection. The convergence of PSC is discussed in detail, and extensive simulation results and comparisons to competing methods are presented. The comparative performance of PSC has been assessed on six real gene expression data sets for which PSC often provides state-of-art results.
McWilliams Brian
Montana Giovanni
No associations
LandOfFree
Subspace clustering of high-dimensional data: a predictive approach does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Subspace clustering of high-dimensional data: a predictive approach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Subspace clustering of high-dimensional data: a predictive approach will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-536487