Study of the effect of simulated space environment on nucleoprotein and DNA thin films

Biology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

1

Astrobiology, Laboratory Simulations

Scientific paper

The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of life is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation (λ = 254 nm) and high vacuum (10-5 mbar). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Study of the effect of simulated space environment on nucleoprotein and DNA thin films does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Study of the effect of simulated space environment on nucleoprotein and DNA thin films, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Study of the effect of simulated space environment on nucleoprotein and DNA thin films will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-738978

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.