Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena
Scientific paper
2011-05-23
Astronomy and Astrophysics
Astrophysics
High Energy Astrophysical Phenomena
36 pages, 6 figures, 1 table. Accepted by ApJS
Scientific paper
For the first time ever, we derive equations governing the time-evolution of fully relativistic slim accretion disks in the Kerr metric, and numerically construct their detailed non-stationary models. We discuss applications of these general results to a possible limit-cycle behavior of thermally unstable disks. Our equations and numerical method are applicable in a wide class of possible viscosity prescriptions, but in this paper we use a diffusive form of the "standard alpha prescription" that assumes the viscous torque is proportional to the total pressure. In this particular case, we find that the parameters which dominate the limit-cycle properties are the mass-supply rate and the value of the alpha-viscosity parameter. Although the duration of the cycle (or the outburst) does not exhibit any clear dependence on the black hole spin, the maximal outburst luminosity (in the Eddington units) is positively correlated with the spin value. We suggest a simple method for a rough estimate of the black hole spin based on the maximal luminosity and the ratio of outburst to cycle durations. We also discuss a temperature-luminosity relation for the Kerr black hole accretion discs limit-cycle. Based on these results we discuss the limit-cycle behavior observed in microquasar GRS 1915+105. We also extend this study to several non-standard viscosity prescriptions, including a "delayed heating" prescription recently stimulated by the recent MHD simulations of accretion disks.
Abramowicz Marek A.
Lu Ju-Fu
Sadowski Aleksander
Xue Li
No associations
LandOfFree
Studies of Thermally Unstable Accretion Disks around Black Holes with Adaptive Pseudospectral Domain Decomposition Method. II. Limit-Cycle Behavior in accretion disks around Kerr black holes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Studies of Thermally Unstable Accretion Disks around Black Holes with Adaptive Pseudospectral Domain Decomposition Method. II. Limit-Cycle Behavior in accretion disks around Kerr black holes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Studies of Thermally Unstable Accretion Disks around Black Holes with Adaptive Pseudospectral Domain Decomposition Method. II. Limit-Cycle Behavior in accretion disks around Kerr black holes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-22789